Nucleotides bind to the C-terminus of ClC-5.

نویسندگان

  • Leigh Wellhauser
  • Hsin-Hen Kuo
  • Fiona L L Stratford
  • Mohabir Ramjeesingh
  • Ling-Jun Huan
  • Winnie Luong
  • Canhui Li
  • Charles M Deber
  • Christine E Bear
چکیده

Mutations in ClC-5 (chloride channel 5), a member of the ClC family of chloride ion channels and antiporters, have been linked to Dent's disease, a renal disease associated with proteinuria. Several of the disease-causing mutations are premature stop mutations which lead to truncation of the C-terminus, pointing to the functional significance of this region. The C-terminus of ClC-5, like that of other eukaryotic ClC proteins, is cytoplasmic and contains a pair of CBS (cystathionine beta-synthase) domains connected by an intervening sequence. The presence of CBS domains implies a regulatory role for nucleotide interaction based on studies of other unrelated proteins bearing these domains [Ignoul and Eggermont (2005) Am. J. Physiol. Cell Physiol. 289, C1369-C1378; Scott, Hawley, Green, Anis, Stewart, Scullion, Norman and Hardie (2004) J. Clin. Invest. 113, 274-284]. However, to date, there has been no direct biochemical or biophysical evidence to support nucleotide interaction with ClC-5. In the present study, we have expressed and purified milligram quantities of the isolated C-terminus of ClC-5 (CIC-5 Ct). CD studies show that the protein is compact, with predominantly alpha-helical structure. We determined, using radiolabelled ATP, that this nucleotide binds the folded protein with low affinity, in the millimolar range, and that this interaction can be competed with 1 muM AMP. CD studies show that binding of these nucleotides causes no significant change in secondary structure, consistent with a model wherein these nucleotides bind to a preformed site. However, both nucleotides induce an increase in thermal stability of ClC-5 Ct, supporting the suggestion that both nucleotides interact with and modify the biophysical properties of this protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of ATP to the CBS domains in the C-terminal region of CLC-1

The common gating of CLC-1 has been shown to be inhibited by intracellular adenosine triphosphate (ATP) in acidic pH conditions. Such modulation is thought to be mediated by direct binding of ATP to the cystathionine β-synthase (CBS) domains at the C-terminal cytoplasmic region of CLC-1. Guided by the crystal structure of the C-terminal domain of CLC-5, we constructed a homology model of CLC-1'...

متن کامل

ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles.

Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO(3)(-)/H(+) exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine beta-synthetase motifs in all eukaryotic members of the CLC f...

متن کامل

Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.

ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a ma...

متن کامل

Expression, purification, and contaminant detection for structural studies of Ralstonia metallidurance ClC protein rm1

Single-particle electron cryo-microscopy (cryo-EM) has become a popular method for high-resolution study of the structural and functional properties of proteins. However, sufficient expression and purification of membrane proteins holds many challenges. We describe methods to overcome these obstacles using ClC-rm1, a prokaryotic chloride channel (ClC) family protein from Ralstonia metallidurans...

متن کامل

Expression, purification, and contaminant detection for structural studies of Ralstonia metallidurance ClC protein rm1

Single-particle electron cryo-microscopy (cryo-EM) has become a popular method for high-resolution study of the structural and functional properties of proteins. However, sufficient expression and purification of membrane proteins holds many challenges. We describe methods to overcome these obstacles using ClC-rm1, a prokaryotic chloride channel (ClC) family protein from Ralstonia metallidurans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 398 2  شماره 

صفحات  -

تاریخ انتشار 2006